детские
Научный Центр Детского Здоровья И Подготовки К Школе
Научный Центр Детского Здоровья И Подготовки К Школе
Поддержите сайт - подпишитесь на канал в Яндекс.Дзене!

Построение фигур одним росчерком карандаша : Математика

I. Постановка проблемной ситуации.

Наверное, все помнят с детства, что очень популярна была следующая задача: не отрывая карандаша от бумаги и не проводя по одной линии дважды, начертить “открытый конверт”:

Попробуйте нарисовать “открытый конверт”.
Как вы видите, что у некоторых получается, а у некоторых нет. Почему это происходит? Как правильно рисовать, чтобы получилось? И для чего она нужна? Чтобы ответить на эти вопросы, я расскажу вам, один исторический факт.

Город Кенигсберг (после мировой войны он называется Калининград) стоит на реке Преголь. Некогда там было 7 мостов, которые связывали между собой берега и два острова. Жители города заметили, что они никак не могут совершить прогулку по всем семи мостам, пройдя по каждому из них ровно один раз. Так возникла головоломка: “можно ли пройти все семь кенигсбергских мостов ровно один раз и вернуться в исходное место?”.

Попробуйте и вы, может у кого-нибудь получится.

В 1735 году эта задача стала известна Леонарду Эйлеру. Эйлер выяснил, что такого пути нет, т. е. доказал, что эта задача неразрешима. Конечно, Эйлер решил не только задачу о кенигсбергский мостах, а целый класс аналогичных задач, для которых разработал метод решения. Можно заметить, что задача состоит в том, чтобы по карте провести маршрут – линию, не отрывая карандаша от бумаги, обойти все семь мостов и вернуться в начальную точку. Поэтому Эйлер стал рассматривать вместо карты мостов схему из точек и линий, отбросив мосты, острова и берега, как не математические понятия. Вот что у него получилось:

А, В – острова, M, N – берега, а семь кривых – семь мостов.

Теперь задача такая – обойти контур на рисунке так, чтобы каждая кривая проводилась ровно один раз.
В наше время такие схемы из точек и линий стали называть графами, точки называют вершинами графа, а линии – ребрами графа. В каждой вершине графа сходится несколько линий. Если число линий четно, то вершина называется четная, если число вершин нечетно, то вершина называется нечетной.

Докажем неразрешимость нашей задачи.
Как видим, в нашем графе все вершины нечетные. Для начала докажем, что, если обход графа начинается не с нечетной точки, то он обязательно должен закончится в этой точке

Рассмотрим для примера вершину с тремя линиями. Если мы по одной линии пришли, по другой вышли, и по третьей опять вернулись. Все дальше идти некуда ( ребер больше нет). В нашей задаче мы сказали, что все точки нечетные, значит, выйдя из одной из них, мы должны закончить сразу в трех остальных нечетных точках, чего не может быть.
До Эйлера ни кому в голову не приходило, что головоломка о мостах и другие головоломки с обходом контура, имеет отношение к математике. Анализ Эйлера таких задач “является первым ростком новой области математики, сегодня известной под названием топология”.

Топология – это раздел математики, изучающий такие свойства фигур, которые не меняются при деформациях, производимых без разрывов и склеивания.
Например, с точки зрения топологии, круг, эллипс, квадрат и треугольник обладают одинаковыми свойствами и являются одной и той же фигурой, так как можно деформировать одну в другую, а вот кольцо к ним не относится, так как, чтобы его деформировать в круг, необходима склейка.

II. Признаки вычерчивания графа.

1. Если в графе нет нечетных точек, то ее можно нарисовать одним росчерком, не отрывая карандаша от бумаги, начиная с любого места.
2. Если в графе две нечетные вершины, то ее можно начертить одним росчерком, не отрывая карандаша от бумаги, причем вычерчивать нужно начинать в одной нечетной точке, а закончить в другой.
3. Если в графе более двух нечетных точек, то ее нельзя начертить одним росчерком карандаша.

Вернемся к нашей задаче с открытым конвертом. Подсчитаем количество четных и нечетных точек: 2 нечетные и 3 четные, значит, эту фигуру можно начертить одним росчерком, причем начать нужно в нечетной точке. Попробуйте, теперь у всех получилось?

Закрепим полученные знания. Определите, какие фигуры можно построить, а какие нельзя.

а) Все точки четные, поэтому эту фигуру можно построить, начиная с любого места, например:

б) В этой фигуре две нечетные точки, поэтому ее можно построить не отрывая, карандаша от бумаги, начиная с нечетной точки.
в) В этой фигуре четыре нечетные точки, поэтому ее нельзя построить.
г) Здесь все точки четные, поэтому ее можно построить, начиная с любого места.

Проверим, как вы усвоили новые знания.

III. Самостоятельная работа по карточкам с индивидуальными заданиями.

Задание: проверить, можно ли совершить прогулку по всем мостам, пройдя по каждому из них ровно один раз. И если можно, то нарисовать путь.

IV. Итоги занятия.

© Блог Димы Шпилера / Школа и школьники

Читать еще:

Новые материалы:

Интегрированный урок — биология + физика – в 8-м (9) классе по теме: "Звуковые волны. Строение органа слуха" :: Открытый урок по химии на тему: "Металлы тоже воевали…" :: Обобщающий семинар по химии в 11-м классе на тему: "В мире синтетических полимеров" :: Заключительный урок по теме: "Технология обработки текстовой информации" :: Тема урока "Производная и ее применение" :: Война ( Man Down ), 2016 :: Дом и дача/Мебель/Детская мебель/Парты и стулья/Мебель/Детская/Столики и Стульчики/Столы детские / Дэми / Стол учебный СУТ 15-04-Д1 ::

Оставить комментарий (facebook):
Комментировать через ВКонтакте:

Оставить отзыв с помощью аккаунта Google+:


Warning: include(/home/u190093/detishka.ru/www) [function.include]: failed to open stream: Not a directory in /home/u190093/detishka.ru/www/inc/bot.html on line 341

Warning: include(/home/u190093/detishka.ru/www) [function.include]: failed to open stream: No such device in /home/u190093/detishka.ru/www/inc/bot.html on line 341

Warning: include() [function.include]: Failed opening '/home/u190093/detishka.ru/www/' for inclusion (include_path='.:/usr/share/php53:/usr/share/pear53') in /home/u190093/detishka.ru/www/inc/bot.html on line 341

1 сентября, в День Знаний, уроки должны быть особенными, запоминающимися и задающими тон на весь учебный год!

Построение фигур одним росчерком карандаша : Математика

I. Постановка проблемной ситуации.

Наверное, все помнят с детства, что очень популярна была следующая задача: не отрывая карандаша от бумаги и не проводя по одной линии дважды, начертить “открытый конверт”:

Попробуйте нарисовать “открытый конверт”.
Как вы видите, что у некоторых получается, а у некоторых нет. Почему это происходит? Как правильно рисовать, чтобы получилось? И для чего она нужна? Чтобы ответить на эти вопросы, я расскажу вам, один исторический факт.

Город Кенигсберг (после мировой войны он называется Калининград) стоит на реке Преголь. Некогда там было 7 мостов, которые связывали между собой берега и два острова. Жители города заметили, что они никак не могут совершить прогулку по всем семи мостам, пройдя по каждому из них ровно один раз. Так возникла головоломка: “можно ли пройти все семь кенигсбергских мостов ровно один раз и вернуться в исходное место?”.

Попробуйте и вы, может у кого-нибудь получится.

В 1735 году эта задача стала известна Леонарду Эйлеру. Эйлер выяснил, что такого пути нет, т. е. доказал, что эта задача неразрешима. Конечно, Эйлер решил не только задачу о кенигсбергский мостах, а целый класс аналогичных задач, для которых разработал метод решения. Можно заметить, что задача состоит в том, чтобы по карте провести маршрут – линию, не отрывая карандаша от бумаги, обойти все семь мостов и вернуться в начальную точку. Поэтому Эйлер стал рассматривать вместо карты мостов схему из точек и линий, отбросив мосты, острова и берега, как не математические понятия. Вот что у него получилось:

А, В – острова, M, N – берега, а семь кривых – семь мостов.

Теперь задача такая – обойти контур на рисунке так, чтобы каждая кривая проводилась ровно один раз.
В наше время такие схемы из точек и линий стали называть графами, точки называют вершинами графа, а линии – ребрами графа. В каждой вершине графа сходится несколько линий. Если число линий четно, то вершина называется четная, если число вершин нечетно, то вершина называется нечетной.

Докажем неразрешимость нашей задачи.
Как видим, в нашем графе все вершины нечетные. Для начала докажем, что, если обход графа начинается не с нечетной точки, то он обязательно должен закончится в этой точке

Рассмотрим для примера вершину с тремя линиями. Если мы по одной линии пришли, по другой вышли, и по третьей опять вернулись. Все дальше идти некуда ( ребер больше нет). В нашей задаче мы сказали, что все точки нечетные, значит, выйдя из одной из них, мы должны закончить сразу в трех остальных нечетных точках, чего не может быть.
До Эйлера ни кому в голову не приходило, что головоломка о мостах и другие головоломки с обходом контура, имеет отношение к математике. Анализ Эйлера таких задач “является первым ростком новой области математики, сегодня известной под названием топология”.

Топология – это раздел математики, изучающий такие свойства фигур, которые не меняются при деформациях, производимых без разрывов и склеивания.
Например, с точки зрения топологии, круг, эллипс, квадрат и треугольник обладают одинаковыми свойствами и являются одной и той же фигурой, так как можно деформировать одну в другую, а вот кольцо к ним не относится, так как, чтобы его деформировать в круг, необходима склейка.

II. Признаки вычерчивания графа.

1. Если в графе нет нечетных точек, то ее можно нарисовать одним росчерком, не отрывая карандаша от бумаги, начиная с любого места.
2. Если в графе две нечетные вершины, то ее можно начертить одним росчерком, не отрывая карандаша от бумаги, причем вычерчивать нужно начинать в одной нечетной точке, а закончить в другой.
3. Если в графе более двух нечетных точек, то ее нельзя начертить одним росчерком карандаша.

Вернемся к нашей задаче с открытым конвертом. Подсчитаем количество четных и нечетных точек: 2 нечетные и 3 четные, значит, эту фигуру можно начертить одним росчерком, причем начать нужно в нечетной точке. Попробуйте, теперь у всех получилось?

Закрепим полученные знания. Определите, какие фигуры можно построить, а какие нельзя.

а) Все точки четные, поэтому эту фигуру можно построить, начиная с любого места, например:

б) В этой фигуре две нечетные точки, поэтому ее можно построить не отрывая, карандаша от бумаги, начиная с нечетной точки.
в) В этой фигуре четыре нечетные точки, поэтому ее нельзя построить.
г) Здесь все точки четные, поэтому ее можно построить, начиная с любого места.

Проверим, как вы усвоили новые знания.

III. Самостоятельная работа по карточкам с индивидуальными заданиями.

Задание: проверить, можно ли совершить прогулку по всем мостам, пройдя по каждому из них ровно один раз. И если можно, то нарисовать путь.

IV. Итоги занятия.

Самое популярное:
Звуко-буквенный разбор слов

Научить детей реально оперировать звуками, т.е. развивать фонетический слух.

Состояние воздуха: Интерактивная карта загрязнения воздуха онлайн, обновляется в режиме реального времени

Экологическая карта состояния воздуха, которым мы дышим. В режиме реального времени.

Тесты для задания 7 ЕГЭ по русскому языку

Представленные тесты дают возможность учащимся приобрести практические навыки, связанные с нахождением нарушений синтаксической нормы. Умение видеть и исправлять данный вид ошибок при построении предложений позволяет не только дать правильный ответ при выполнении этого задания, но и не допускать подобных ошибок в сочинительной части экзамена.

Водоемы Краснодарского края. Их использование и их охрана

Урок дает возможность сформировать представления учащихся о водоемах нашего края.

Урок по фольклору (предмет по выбору). Тема: "Хлеб на стол и стол - престол

Урок дает возможность сформировать представления учащихся о водоемах нашего края.

Урок истории в 5-м классе по теме "Жизнь египетского вельможи"

Данная статья включает организацию самостоятельной работы учащихся на разных этапах урока с использованием различных методов и приемов.

Задания для проведения школьной олимпиады по химии для учащихся 8–10-х классов

В работе представлены задачи для проведения школьного тура олимпиады по химии для обучающихся 8–10-х классов. Олимпиада может включать заочный и очный туры. Задания должны быть разнообразными по содержанию и типу. Уровень сложности заданий должен быть доступен для большинства школьников, но по своей форме задания должны отличаться от контрольной работы по химии необычностью постановки вопроса, а в ответах на них должны допускаться приемы решений, которые не являются стандартными.

Девятая жизнь Луи Дракса (The 9th Life of Louis Drax, Великобритания, 2016) - спойлеры, пересказ, трактовка

Этот фильм заслуживает растаскивания на цитаты. "С возрастом я сам научился понимать, чего от меня хотят", "Мужчины всегда думают, что раз она красивая - значит, она хорошая" - и много другого. Вообще очень достоверный фильм в отношении психологических деталей. Рекомендую к просмотру.


Школьные занятия:
RSS (видео) // RSS (статьи)
Педагогические материалы:

контакты
 
Рейтинг@Mail.ru
ADD